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On Optimal Shooting Intervals 

By R. M. M. Mattheij and G. W. M. Staarink 

Abstract. We develop an adaptive multiple shooting strategy, which is nearly optimal with 
respect to cpu time. Since the costs of integration are the most important components in this, 
we investigate in some detail how the gridpoints are chosen by an adaptive integration routine. 
We use this information to find out where the shooting points have to be selected. We also 
show that our final strategy is stable in the sense that rounding errors can be kept below a 
given tolerance. Finally we pay attention to the question how the need for memory can be 
minimized. 

1. Introduction. Consider the ODE 

(11) dx(t) = L(t)x(t) + r(t), a S t < dt 

where L(:) is an n x n matrix function and r(-) an n vector function. Assume that 
the following boundary condition (BC) is given for x 

(1.2) Max(a) + M9x(/3) = b, 

where M. and M are n x n matrices. Most often both forward and backward 
integration is unstable due to the presence of rapidly increasing and rapidly 
decreasing solutions. This is the reason why a multiple shooting (M.S.) technique is 
preferred. In such a method one selects a set of shooting points to (= a), tI,..., tk 
( = f8) and restarts the integration on each interval (ti, ti+ I1) for i-0, . . ., k - 1. In 
this way one computes for each i an approximate particular solution (if the problem 
is inhomogeneous), f(t) say, and an approximate fundamental solution, 4Wi(t) say, 
on some grid C [ti, t,+ J]. Then an approximant, J(t) say, of the desired solution can 
be written as 

(1.3) x(t) = 1(t)VI +fi(t), 

where vi is some fixed vector. 
By matching the relations (1.3) at the shooting points, we obtain a relation for the 

vi, 

(1.4) Aii - Bivi+ = Fi, i = 0,..., k - 2, 

where 

(a) Ai =4;(ti+1), 

(1.5) (b) Bi=4>i+I(t+ 1), 

(c) Fi = fj (ti 1)- fi (ti 1) n k - 2 v_ 
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The relations (1.4) together with a transformed version of the BC (1.2) give the 
following multiple shooting equations that determine the v, (and hence x): 

(1.6) PV=F,where 

AO -Bo 
Ai -B, 0 

(1.7) P0 

Ak 2 -Bk 2 

mak (to) M#4MkI - (tN) 

V = (V0'...I V*_)T and F = (FoT. ,FT l)T; for 0 i 0 k -2 the F, are defined 
by (1.5) and moreover F. I := b - MfO(tO) - MOfNI(tN). This description of 
multiple shooting gets the general framework. There exist many variants which may 
be considered as modifications regarding one or more of the following aspects: the 
choice of the shooting points, the number of basis solutions of the homogeneous 
system (i.e. the number of columns in the 0,) and, finally, the way the desired 
solution is computed from the matching recursion and the BC (cf. (1.7)). The last 
question is dealt with either by using a special block LU solver or by using special 
recursion techniques for solving (unstable) recursions, cf. [2], [8], [12], [16], [18]. The 
problem of how many basis solutions should be integrated arises in so-called 
(partially) separated boundary conditions (cf. [4], [13], [16]): By limiting the number 
of columns in the i to 1 say, the efficiency of the method is expected to increase. If 
/ < n, one can reorder the matrix P such that one effectively deals with 1 x / blocks 
only (cf. [ 13]). For our present discussion we are mainly interested in the question of 
how the shooting points t, should be chosen. The simplest way for doing this is to 
give them in advance (cf. [2], [3], [18]). However, as adaptivity is one of the most 
appealing aspects of M.S., one rather would like to have a device that decides for 
itself when the integration should be restarted (cf. [4], [13], [16]). There is still much 
discussion about the optimal choice (cf. [1, p. 159ff.]). We can think of three 
optimality criteria: The first one is stability. Originally this was one of the ideas 
behind M.S. to improve single shooting by making the interval of integration 
sufficiently small in order to limit growth of (rounding) errors. The second criterion 
is the amount of work. In using an automatic integrator and a (rough) stability 
check, we may be far away from optimally distributed grids, as described e.g. in [7], 
[14], [15], and therefore have an inefficient algorithm. Another criterion is the 
memory space that is required. Apart from situations where some shooting points 
may be given in advance (cf. [2], [3]) or where the solution has to be computed on a 
sufficiently dense grid, it quite often happens that one is merely interested in having 
approximations at just some points; if more information is needed, one may restart 
the algorithm on some smaller shooting interval. In the last situation it makes sense 
to ask for the minimal number of shooting points kmin say; for the smaller kmin, the 
less matrices A, and B, have to be stored. This paper is intended to contribute to the 
discussion about optimality regarding these three criteria, viz. optimal stability, 
minimal complexity (or rather computing time) and minimal storage. For this we 
will study in some detail a model problem from which we can draw a number of 
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conclusions. The results we will derive are likely to hold for more general BVP of 
mildly stiff ODE. It should be clear, however, that we cannot be too ambitious and 
may hope for a suitable divide and conquer strategy at most. For example, single 
shooting is an optimal strategy from a storage point of view but is most often 
unstable. 

An outline of this paper is as follows: In Section 2 we first consider optimal 
shooting intervals in relation to the stability (or rather propagated rounding errors) 
and derive a practical criterion for an automatic check. In Section 3 we introduce a 
model problem and indicate why the adaptive integrator should be used only once. 
In Section 4 we give an estimation theory for the number of gridpoints required by 
an automatic integrator with local step size control. This is applied in Section 5, 
where a bound is given for the total operational cost of a multiple shooting 
algorithm; here we also derive an almost optimal strategy regarding the complexity. 
In Section 6 we show how we may condense the multiple shooting equations in order 
to minimize the storage. Several examples sustain the theory. 

2. Shooting Intervals and Error Amplification. The most popular variants of 
multiple shooting for linear problems use some reorthogonalization technique at the 
shooting points; cf. [4], [8], [12], [13], [16]. In this the matrices 4I1(t1+ ) are factorized 
into an orthogonal and an upper triangular matrix. The orthogonal matrix appearing 
in this factorization is then used as an initial value for , + I(t+ ). The information 
contained in the upper triangular matrix may be used for selecting the shooting 
points (cf. [4], [13], [16]). In our opinion the most appropriate criterion to select a 
shooting point in order to limit the error growth is the one that is also mentioned in 
[13], viz. a check on the incremental matrices A, Bi 1 ; in fact this criterion may also 
be used if no orthogonalizations are used. Although a detailed description of 
stability aspects is outside the scope of this paper, we certainly have to justify this, at 
least qualitatively. (For analysis cf. [2], [101, [13], [181.) 

For a proper understanding of the global error, it is useful to distinguish between 
rounding errors and discretization errors. For the latter type of errors one can show 
that the global effect of a local discretization error, with bound 8 say, is estimated by 

- KNO; here K is some constant, that is 0(1) if the BVP is well conditioned, and N is 
the number of gridpoints (cf. [9], [10]). Of course this makes sense only in exact 
arithmetic. The rounding errors, however, deal only with the discrete problem and 
the way the computations are actually carried out. In particular for multiple 
shooting we should reckon with rounding errors made in the two main steps. In the 
first step we in fact solve k unstable initial value problems on the intervals (t,, t,+ 1). 
If t denotes the relative machine accuracy, then we can expect propagated rounding 
errors at t,+ I with an error bound < IIAIB-21II . The second step is the solution of 
the multiple shooting equations. Assuming that P is well conditioned (cf. [9]), we 
may deduce that errors made at this step are only moderate. (This argument is still 
meaningful if the matrix P is not formed explicitly like in [16].) Hence we find that 
the global rounding error mainly arises from errors in integrating the k unstable 
initial value problems. From the general result given in [10], we therefore conclude 
that a global error bound is given by 

(2.1) iKkmaxIIA B1j1IIl, 
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where K is a conditioning constant as above. (N.B. the factor k does not appear if we 
have an exponential dichotomy, cf. [9, Section 5].) Having accepted (2.1) as a bound 
for the global rounding errors, a practical check on allowed error amplification is 
then given by 

(2.2) IIA,B,t-7II I Kk~' 

where - is the required accuracy for the solution of the problem. Notice that (2.2) is 
certainly an improvement of criteria, as e.g. mentioned in [4], [13], [16], since the 
latter do not reckon with the required global accuracy at all. 

Example 2.3. Consider the ODE 

dx I - 19cos2t 0 1 + 19sin2t 
0 19 0 Ix+r(t), dt I- + 19sin2t 0 1 + l9cos2t 

where r(t) is chosen such that 

x- 1 

is a solution. The homogeneous ODE has solutions growing like e20', e9', e -8t* 

Let M. = M = I and [a, [0, nr]. It is not difficult to check that K =1 (cf. 
[9]). Since x should be integrated exactly, we are mainly confronted with errors due 
to rounding. To solve this problem we used an M.S. code as described in [12], with 
various choices for the increments IIA, B,-) 1 II, on an IBM 370/165. Table 2.1 gives the 
errors in 11 * Ilo for single precision (t 4.7 107) and Table 2.2 the errors in double 
precision (Q 1.1 10-16). The influence of the incremental value is as predicted 
indeed. (N.B. the factor k does not appear in this case, cf. [9, Example 6.3].) Here '2 
denotes the maximal increment, error the actually found maximal error, and nos the 
number of shooting points. 

TABLE 2.1 (E 10-6) 

10 100 1000 

error 9.2 10-6 4.6 10-5 7.5 10-4 

nos 28 14 10 

TABLE 2.2 (E = 10-8) 

lo, 104 i05 106 

error 1.1 l0o-3 1.4 10-12 3.3 10"'' 2.6 10-'? 

nos 10 7 6 5 

3. The Model Problem. The question of optimal complexity that will be discussed 
in Sections 4, 5 is closely related to the optimal integration strategy. In this paper we 
assume that we are using an adaptive integrator. Such an integrator will always 
produce overhead, mainly due to rejecting step size choices. Since we have to 
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compute several solutions on each interval, we basically have several times this 
overhead. However, in general, a solution will always contain a dominant mode, and 
it is this mode that is actually responsible for the step size choice. Therefore it seems 
sensible to use the adaptive feature of the integrator only once on each interval for a 
certain solution and to use the integrator as such for computing the remaining 
solutions on the same grid. The savings thus obtained are considerable as one may 
check e.g. from Table 3.1, where we have given in column two the cpu time (in 
millisecs) that was needed to compute the particular solutions fi in Example 2.3 by 
the adaptive method RKF45 (cf. Example 4.7). The number of gridpoints found by 
this integrator (N) is given in column three. Finally in column four we have given the 
cpu time for the computation of the fundamental solutions 4Fj, only using the fourth 
order Runge-Kutta method on this grid. 

TABLE 3.1 

c total cpu part. sol. N total cpu fund. sol. 

lo-, 126 121 129 
10-4 150 175 190 
10- 224 269 283 
10-6 337 418 439 

In order to get an idea of how large the interval must be, or how many points per 
interval should be chosen to have an optimal computing time, it makes sense to 
consider this problem for a simplified model first. 

The model is based on the following ideas: First, it is assumed that the adaptivity 
feature is applied to the inhomogeneous problem only (see however Remark 3.4). In 
agreement to what has been said above, the fundamental solution therefore is just 
integrated on the thus computed grid. Second, we assume that there exists some 
smooth particular solution (even for boundary layer problems this is quite often the 
case). We can then always scale the solutions of (1.1) such that this particular 
solution is of order 1 (this is only for reasons of simplicity), and we assume this has 
been done. In the third place, by absence, in general, of other information, we 
assume that the particular solution on each interval (ti, t1+ ) has been given the 
initial value 0. As a consequence, this particular solution is expected to have an 0(1) 
component of the fast mode at t = t,. Finally, we assume that L(t) does not vary 
much on [a, ,B]. For this kind of problems, the following scalar ODE gives a 
qualitatively satisfactory description regarding the growth behavior of the solutions: 

(3.1) dx(t) = Xx - xg(t), X > 0, dt 

where g(*) is a smooth scalar function with Vg(t) = 1. On each of the intervals we 
then compute an approximant of the (exact) particular solution qi(*) say, defined by 

(3.2) q1(t) = X Jg(T)e'(t T) dr, ti < t < t + l 

Hence 

(3.3) qi(t) = g(t)e'('t') -g(ti). 
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Remark 3.4. For homogeneous problems we should take just some homogeneous 
solution rather than an inhomogeneous solution for approximation by the adaptive 
integrator. The initial value should then be some normalized value as is common 
practice in M.S. algorithms. Therefore a qualitative description of this integration is 
properly simulated by considering the homogeneous part of (3.1) only. The solution 
that is actually approximated by the adaptive method can then be assumed to be 
SAOt):= eA(t-). The smoothness properties of si() and qi( ) (cf. (3.3)) are quite 
similar. On account of this observation, we shall not treat the homogeneous problem 
separately. 

4. Estimates for the Number of Integration Steps on an Interval. In order to get an 
idea of the computational cost of the integration, we first investigate the number of 
gridpoints that is needed for an adaptive solver to approximate a solution on a given 
interval within a certain accuracy. We do this for the model problem that was 
defined in Section 3. 

Most adaptive methods are based on the use of local error estimates (cf. [ 17], [2, p. 
19]). Let est be such an estimate at a certain point told. Then a new step size, hnew' is 
found from an old step size, hold, using a formula like 

(4.1) h new = 0.9h old est 

Here p is the local order of the method, e the prescribed accuracy and 0.9 a safety 
factor. In particular in our model problem, est is determined using approximants for 
(derivatives of) qi(t) on the interval (ti, ti+ l). Ideally we must have (cf. (3.3)) 

(4.2) est = t(hoId)PXPexp(XtoId)g(ti) 

where D is a kind of error constant (depending on the integration method). So we find 

1 e I/ 
(4.3) h new = 09 l t| eXP(-gtold/P) 

Therefore, by virtue of (4.2), we can in principle determine the number of gridpoints 
that we ideally need on (ti, ti + l), (ti, ti+ I ) say. We will already be satisfied with a 
reasonable estimate of )-X (ti, ti+ l: 

Property 4.4. DX(ti, t1+ I), the number of gridpoints on (ti, ti+ l), that is found by the 
adaptive integrator is approximately equal to 

10 Wt(i) "'a 
5 ( ti ti+ l):= -9 i p(exp(X[tj+, - tj]/p) - 1). 

Proof. Let i be fixed. Let us denote the step sizes as found from the method by 
S1, S21.. ., SN, i.e. we have gridpoints ti, ti + sl ... I ti + E2. sj = tj+ I (the last step 
size must be chosen such that we arrive at ti + I). From (4.3) we then find 

(a) si+I =ttexpy-v2E)sj wherett =0.9 - g(t andv=-. 

Now let s( t) be a differentiable function, for which 

(b') s(t) = tuexp(-f 's(T) d) for I < t < N, 
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and 
(b12) s(i) = S= 

Then s(l) can be expected to be a good estimate for s,. Differencing once in (bl) 
yields the Riccati equation 

d 
(c) d-s(t) = -vs2(t). 
Hence 

1 1 
( t + c' 

where c can be found from (b2). We obtain 

(d) ( ) = A 
vp4I - 1) + 1 

In order to estimate N we use s(l) in (d) as an estimate for s1 and moreover 
ysN 1t+l - t,. We thus obtain 

N -(expv[+l - - 1. 

Remark 4.5. For fixed t, the function S(t) = S (ti, t) is monotonically increasing 
for t > t,. By expanding it in powers we moreover see that it is increasing more than 
proportional with (t - t,). 

Remark 4.6. A most interesting feature of the estimate in Property 4.4 is that it 
shows the dependence of S(ti, ti+ ) in terms of X(t, + - t,) or rather of the 
incremental growth exp( M t,+ - t,]1). This is important for the generalization later 
on. Note that we also found this incremental growth as the important quantity to 
determine the length of a shooting interval in Section 2. 

Although the result of Property 4.4 is based on first order estimates it is 
remarkably sharp as can be seen from 

Example 4.7. A very nice and easy to handle integration code is provided by 
RKF45 (cf. [5], [17]). Effectively it uses local error estimates with p = 5 and 

= 1/1040. We have applied RKF45 to a model problem, where we have chosen 
g 1. (Note that the results are independent of i now.) The solution was approxi- 
mated for several interval lengths, which were determined by prescribing certain 
incremental growth values, 9 say. We have also tried several values for e (the 
tolerance), between 10-3 and 10-6 and X, between 1 and 20. As was to be expected, 
for a given value of C, the number of points was independent of X. In Table 4.1 we 
have listed the actual number of gridpoints, "9L" values, followed by their estimates, 
"5" values, between brackets. 

TABLE 4.1 

1 1000 100 10 e 2 

lo-, 16 (16.4) 8 (8.3) 3 (3.2) 1 (1.2) 1 (0.9) 
10-4 25 (26.0) 13 (13.2) 5 (5.1) 2 (1.9) 2 (1.4) 
l0o5 41 (41.2) 21 (20.9) 8 (8.1) 3 (3.0) 2 (2.3) 
10-6 67 (65.4) 34 (33.1) 13 (12.8) 5 (4.5) 4 (3.6) 

Note that the estimates are relatively sharper the larger G is. 
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5. Optimal Shooting Intervals and Complexity. Suppose we divide the interval 
(a, /3) into k subintervals. For the model problem we saw in Remark 4.5 that, for a 
given tolerance E, the number of gridpoints per subinterval increases more than 
proportional with the interval length. Hence if the function g(*) is smooth we can 
expect the optimal distribution of the shooting points to be such that each interval 
contains the same number of gridpoints (at least if k is not too small). This can be 
thought of as equidistributing the shooting points (cf. [7], [14]). 

In order to optimize for k we first consider ODE's for which the model problem 
with g 1 gives an appropriate description regarding the adaptive integration. In 
this case equidistributed shooting points are also equidistant. From Property 4.4 we 
therefore find that the total number of gridpoints is estimated by 

A 
-I- 

10 I/' i ( (X(1 - a) A 
(5.1) ~ (k):= E (t,t +,) = k 9 p e exp( kp ) - 

1=0 

The computational complexity of the integration can now be estimated by using 
(5.1). In order to make our discussion as general as possible we include methods like 
these in [13], [16], where the 4), consist of / columns (1 < n). We obtain 

Property 5.2. Let the computational cost of one integration step be K1 n2 flops, for 
some constant K}. Let '1, consist of / columns for all i. Then the total cost of 
integrating the fundamental solution is estimated by K,5(k)n3 flops. (A flop is one 
multiplication plus one addition.) 

The constant Kc strongly depends on the problem, i.e. K1 will be larger if the 
evaluation of L is more costly. 

The cost of the adaptive integrator is more complicated. Of course, in general 
there are more integrations than actually used gridpoints. In particular restarting the 
integration may cause quite a bit of overhead. A realistic model is given by 

Assumption 5.3. Let the overhead of the adaptive integrator on a subinterval be 
estimated by KIc[yl + y25(t,, t, + (/3-a)/k)]n2 flops, where Ki is as in Property 5.2 
and y, and Y2 are positive constants, independent of k. 

Combining Property 5.2 and Assumption 5.3, we find 

COROLLARY 5.4. The total cost of integration is estimated by 

K,{['(k)(l + 1) + Y2] + ky,)n2 

flops. 

There are two other possible sources of computational labor. The first one is the 
solution of the linear system PX = F (cf. (1.6)). A solution of (1.6) can e.g. be found 
using one of the special solvers (cf. [8]) or by direct recursion (cf. [2], [12], [16]). 
Therefore the following makes sense. 

Assumption 5.5. Let the computational cost of solving (1.6) or its related subsys- 
tem be given by K2kl3. If orthonormalization is used, then this has a cost of K3kln2. 
Here K2 S 2 and Ki3 < 1. 

From this we now find 
Property 5.6. The total computational cost of the M.S. algorithm is estimated by 

(1 + 1 + y2)Kl5(k) + (K m + K22 + K21)k})n 
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flops. The number of shooting intervals is bounded above by 

kma i, lim 5(s) - | (,/ -a) 

(here [a] denotes the smallest integer greater than or equal to a). For the optimal k, 
kopt, i.e. the number of intervals with minimal cost, there holds 

kopt kmax if (l + 1 + 2) K3 I3 
n K1 Ki 

lo I/P ~ (1?+1 ? Y2)Kj1 k0~ X( a)- 32+ otherwise. op 9 K ei I 2 n2+ K1 + -Y, 

Proof. The complexity estimate is a consequence of Corollary 5.4 and Assumption 
5.5. Furthermore we observe that i(s) is monotonically decreasing (for s > 1) and 
approaches 

lim 5(s) = 9(1 - |a); 

note that kma should be an integer. Since 5( ) is an estimate for the number of 
points/interval, we see that 

63(k) = 5 t, ti + k > k 
1=0 

Hence, if 

2+ +y2) > K2 Y, 
n~2 K K1 

we have that kopt = kma. Finally, if this is not the case, the approximate optimal 
value follows from solving 

(I + 1 + y2)K1(f(kopt) =(29 + K31 + Y1K1()kopt. ? 

COROLLARY 5.7. For the optimal number of points per interval we have 

(i) (1 kp ) 'f (1 I + Y2 ) > t - +13+Y 

kopt n~ f 2 Ki K1 

(ii) 13/n t t + 2 + 3 + , otherwise. I~1,1 kopt ~ (I+ 
1 

+y2)KI 

The preceding estimates mainly give a good qualitative insight in the optimal 
complexity. On account of the fact, however, that 5(ti, ti + (f? - a)/k) is a 
relatively more inaccurate estimate of DL(ti, ti(1? - a)/k) the closer 

DL(tj, t, + (P - aol)k) 

is to I and at the same time if(k) (the dominant factor in Property 5.6) is almost 
independent of k for larger k, it seems advisable to take for DZ(ti, t1 + (ai - o)/k) 
values that are not too small integers. 
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Remafk 5.8. If / < n, the result of 5.7(ii) seems to indicate that the optimal 
number of points might be slightly smaller than in case I = n. However, as a whole, 
the qualitative conclusion, viz. about a fixed number of points, is similar. 

Having adopted the strategy of a fixed number of gridpoints per interval, for the 
model problem with g 1, it seems quite reasonable also to use this for more 
general model problems. Indeed, as observed before, for larger k (i.e. a smaller 
number of points per interval) an optimal strategy (i.e. equidistribution of shooting 
points) would require the same number of gridpoints in each interval. Although an 
analogue to the function 'T(k) now is more complicated, it seems very likely that the 
qualitative conclusions will be the same. We can then generalize further: if it is the 
equidistribution that counts, then the complexity arguments are likely to be valid for 
cases where the homogeneous solutions rather grow like exp(J' A(a) do) for some 
nonconstant function X(a). 

In order to give the algorithm as much flexibility as possible, we therefore propose 
to choose ' (= steps/interval) such that it is close to the optimal value, but not too 
far from 1. From our experiments, 5 was found to be fairly satisfactory when 
RKF45 was used. 

IBelow we give some examples which illustrate all this. 
Example 5.9. Consider the ODE in Example 2.3, now with r(t) such that 

x(t)=e'(1). 

We used an M.S. algorithm that picked a new shooting point either if a certain 
incremental growth was detected or if the number of gridpoints on the subinterval 
was equal to a given input parameter. The initial value for the particular solution 
was chosen to be 0. In Figures 5.1 and 5.2 we have indicated the total number of 
gridpoints AtT as a function of the parameter L that sets the maximal incremental 
growth per interval. 

As can be expected this number is monotonically increasing for large d. For 3 
close to 1 this is not the case; this last effect is caused by inefficiencies if the 
shooting interval is too small (N.B. one step per interval is minimal). In Figures 5.3 

NT Nr 
700 

400~~~~~~~~~0 

300 6300 

2800 
400 

1 2 3 1 2 3 
tog O tLog 

FIGURE 5.1. e= 10-4 FIGuRE 5.2. e- 10-6 
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and 5.4 we have indicated the cpu time (in milliseconds) that was needed to compute 
the desired solution in double precision. Of course, the actual magnitudes of the 
figures are less important than their qualitative meaning: For e = 10-4 we again see 
that too small increments are less efficient; however, for e = 106 this is no longer 
really to be seen from such a picture. The reason is that for smaller tolerances the 
number of points per subinterval is larger and therefore the overhead is less felt for 
e 10-6 

CpU CpU 

600 1300 

1200 

500 1100 

400 ~~~~~~~~1000 
900 

1 2 3 1 2 3 
log a log 6 

FIGURE 5.3. e = 1-4 FIGURE 5.4. e = 106 

We also have tried the M.S. algorithm with shooting intervals consisting of a fixed 
number of points. In Table 5.1 we have given the total cpu time (in millisecs) and the 
number of points (indicated between the brackets) for several values of the tolerance 
e and the fixed number of gridpoints per interval GL. 

TABLE 5.1 

3 4 5 6 7 8 

l0-3 317 (108) 308 (113) 296 (116) 290 (121) 289 (125) 290 (130) 
lo-4 443 (162) 399 (165) 385 (170) 384 (175) 380 (181) 380 (186) 
l0-5 684 (256) 625 (260) 590 (264) 580 (269) 580 (274) 575 (280) 

In all these computations at least 90% of the cpu time was needed for integration. 
Example 5.10. As a first major deviation from the model problem, we choose r(t) 

in 2.3 such that a particular solution is given by 

sin 30t 1). 

This means that this solution will dominate the "activity" of a general solution. In 
Table 5.2 we have given cpu time and number of grid points (in brackets) for several 
tolerances and maximal growth per interval 9. In Table 5.3 we did the same but now 
with the number of points per interval fixed (cf. Table 5.1). 
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TABLE 5.2 

100 200 1000 10,000 100,000 

0-3 255 (103) 254 (110) 295 (134) 375 (179) 491 (252) 
10- 520 (268) 472 (283) 670 (337) 887 (467) 1215 (653) 
10-8 1931(1100) 2212(1196) 2619(1399) 3147(1690) 3614(1940) 

TABLE 5.3 

3 4 5 6 7 8 

i0-3 254 (90) 242 (87) 235 (89) 237 (90) 257 (101) 255 (100) 
10-5 610(207) 524(207) 482 (206) 462(197) 472(209) 488(217) 
10-8 224 (824) 2031 (824) 1935 (825) 1855 (826) 1805 (828) 1815 (827) 

Qualitatively these tables give a result similar to that in the previous example, in 
favor of choosing 9L fixed. Since the activity of sin 30t is more or less dominating the 
integration step, we may expect that the total number of gridpoints is fairly 
independent of DL (= points/interval). Indeed, it turned out that for e = 10-1, 
i 825 for all larger values of %, with natural deviations roughly equal to 5 - 

(5r/% 1- 1)l. 
Example 5.11. Consider the ODE 

dx 
24(I(-)0-t(t) 

dtx ( 2+ ( t ) -+ ( t) ) x + (t) = 20 sin t + 20t cost. 

Choosing the boundary condition x(0) + x(2) - (2 1e2)), one can easily check that 
X 5 (1)e'. A fundamental solution is given by 

F(t) ( I ( e)(. 
) 

? 4(t) = 20tsin t. 

Apparently the basis solutions in this problem have a significantly varying growth 
behavior on [0,2]. Tables like 5.2 and 5.3 are given below, viz. Table 5.4 and Table 
5.5. 

TABLE 5.4 

100 200 1000 10,000 100,000 

lo-, 126 (71) 92 (77) 155 (91) 170 (118) 208(156) 
io05 256(180) 264(194) 325 (236) 399(304) 504(392) 
10-8 929(717) 960(749) 1021 (819) 1089 (871) 1137(904) 
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TABLE 5.5 

91 3 4 5 6 7 8 

lo-, 129 (61) 127 (63) 126 (65) 127 (68) 125 (70) 129 (73) 
10- 263 (133) 246 (136) 234 (139) 233 (142) 232 (145) 236 (149) 
10-8 1014 (526) 971 (529) 926 (532) 879 (536) 871 (539) 868 (542) 

Example 5.12. Consider the ODE 

dx t( - cos2t) 1 + tsin2t + (t), 0 t 4 
dt - 1 + t sin 2t t(Il + cos 2t )J 

where r(t) is chosen such that 

x =( cs ). 
1- sin t 

A fundamental solution is given by 

F(t) CO( cot sin t 1 0\ F -sint cos t 0 e't) 

In this example all solutions are varying with time, and moreover one of the basis 
solutions has a very rapidly changing growth behavior (as compared to a solution 
growing like eAt, A constant). Some results are given in Tables 5.6 and 5.7. 

TABLE 5.6 

g6 100 200 1000 10,000 100,000 

l0-, 52 (27) 51 (25) 60 (34) 66 (42) 81 (55) 
l0-, 96 (66) 99 (65) 133 (88) 151 (106) 184 (137) 
10-8 348 (264) 327 (250) 394 (309) 420 (335) 435 (343) 

TABLE 5.7 

91. 3 4 5 6 7 8 

l0o- 50 (20) 47 (20) 48 (22) 51 (24) 52 (25) 52 (26) 
10- 97 (46) 91 (47) 87 (48) 86 (48) 86 (50) 87 (50) 
10-8 341 (180) 304 (177) 391 (177) 271 (178) 269 (178) 268 (175) 

Example 5.13. Our final example is the well-known artificial layer problem (cf. [1, 
p. 521, [3, p. 4551, [16, p. 601). Consider the ODE 

x"t +-+ 2) x = 0, with x (0.1) = -x (-0.1) 0.1/2 
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For small ,t, there is only activity in a region of thickness V/A around x = 0. Hence a 
reasonable code should choose almost all points in this region. Below, in Tables 5.8 
and 5.9, we have given cpu time and number of gridpoints for ,u = 106. 

TABLE5.8 (tt= 10-6) 

2 4 6 8 100 1000 10,000 

1IO- 72 (21) 42 (26) 38 (26) 38 (26) 28 (18) 46 (47) 44 (47) 
1IO- 58 (40) 54 (48) 54 (49) 54 (47) 52 (56) 58 (62) 64 (95) 
108- 114 (144) 112 (159) 112 (163) 110 (155) 122 (187) 128 (190) 175 (290) 

TABLE 5.9 (t= 10-6) 

3 4 5 6 7 8 

1o-3 39 (28) 33 (26) 30 (26) 33 (29) 31 (28) 32 (31) 
1O- 60 (52) 56 (54) 54 (54) 49 (53) 49 (53) 47 (54) 
10-8 181 (182) 150 (181) 145 (181) 129 (181) 130 (181) 120 (181) 

Since the basis solutions do not grow substantially on this interval (viz. a factor 
500-1500, depending on the accuracy of the computation), a strategy with q fixed 
means that a choice of 9 > 1500 will result in single shooting. It appears that the 
integrator needs a number of steps before it has relaxed the step size, after having 
passed the high activity region. Because of the starting strategy of RKF45, a new 
shooting point outside of this high activity region will automatically relax the step 
size. This explains why the total number of steps '7XT is independent of the 6)L. The 
results are also in agreement (perhaps better, even taking into account that we used 
the adaptivity feature for one solution only) with the results in [16], where e.g. for 
e = 10-8, 'XT = 190. The numbers given in [3] do not lend themselves to compari- 
son. However, since they are computed by a code, which is designed to handle 
nonlinear problems, they involve the computation of 5 basis solutions, instead of 2 
like the code in [16] does; hence we do not expect the results in [3] to be competitive. 

Conclusion. The use of an adaptive integrator is undoubtedly one of the best 
features of M.S. as e.g. Example 5.13 confirms (see also the conclusion in [16]). If 
one chooses to determine the shooting points by checking some kind of dependence 
of solution vectors (cf. [4], [16]), then one does effectively the same as checking the 
growth of solutions (cf. [13]), as this growth generates errors, which in turn cause the 
dependence. However, as can be seen, both from the examples and from the theory, 
a reliable growth tolerance does not seem obvious. In fact, since rounding errors of 
order j (the machine precision) are often considerably smaller than (global!) discreti- 
zation errors of order e (the tolerance), an acceptable bound for the growth (from a 
stability point of view) would be O(e/j), see also Sections 2 and 6. Note that in our 
examples this bound would be at least as big as 108, which would lead to extremely 
inefficient strategies of course. In [2], [3], [18] the M.S. codes require the user to 
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specify the shooting points. Only if a good knowledge of the growth of solutions is 
available this may work well. After what we have found above, however, it goes 
without saying that such a strategy may be far from optimal, regarding the 
complexity. In that respect the results in [3] should be interpreted in a relative sense, 
i.e. only in relation to that special implementaion. Concluding we may say that the 
fixed number of integration points per interval option seems to work equally well or 
better than the others. Moreover it is based on a theoretical model which lends itself 
to a more extensive analysis. 

6. Minimization of Storage. As we noted in Section 1, a third optimality criterion 
is given by the requirement to minimize the storage for the matrices Ai and Bi and 
the vectors F,, i.e. to minimize the order of the matrix P (see (1.6)). We shall now 
show that we can reduce this order without really affecting the complexity and the 
stability, the latter at least to a certain extent. Such a reduction of the order is also 
important in order to make the previously obtained complexity strategy practical; 
indeed, following the recommendations of Section 5, we may end up with a very 
large value for k (number of shooting intervals), which might make the proposed 
strategy less attractive, if not impractical. 

The solution to those problems is very simple though. Indeed, all we have to do is 
to assemble as much of the recurrence relations (1.4), as is allowed by stability 
considerations, in order to build a condensed "major shooting step". Below we 
describe this condensation. 

If for a given tj, the point t,+, is such that 

(6.1) Ilk+1-1(tt+1)[k,_+1l1(t1+ ) I... < ' 

then it follows, from what has been observed in Section 2 (cf. (2.1)) that forward 
recursion on (t, t, + ) gives global rounding errors of maximal order e. Hence rather 
than (1.4) for i = j, . . , j + 1, we use the major recursion step 

(6.2) C v+/_ itj-Bj+,- Itj+ = Gj+l_ I 

where C+ and Gj+h l are recursively defined by (6.3) and (6.4), respectively: 

(6.3) CG = Aj; CG+S+I =A A B.' C s = 0,..., 1- 1, 

(6.4) Gj= FJ; Gj+S+I = Aj+s+iB-'G+ + Fj +S+1 s = 0,... * ,- 1. 

It goes without saying that the condensed relations like (6.2) together with the BC 
give a significantly lower order M.S. system if the ratio e/t is large. Moreover, 
condensing the system plus solving it has approximately the same complexity as 
solving the uncondensed one; for this one should note that each recursion step 
approximately requires 13 flops (cf. Example 6.6). 

Remark 6.5. The recursive formulations (6.3) and (6.4) show that the matrices 

Ci+,- and Gj+/_ can be found from updating C>+s and Gj+s at each minor 
shooting step (proceeding from tj to tj+ ). As a consequence one only needs some 
limited work space, but no extra memory. 

The threshold criterion (6.1) may be implemented in the following way. Assuming 
the problem is well conditioned, we just choose some constant q , equal to 10 say, to 
serve as an upper bound for K. A good guess for k is given by (/8 - a)/(tj+l - tj). 
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Hence, in practice we suggest to use 
E E tj + i-t (6.5) 1 1 -a: 

Example 6.6. We performed this condensation strategy for the problem given in 
Example 2.3, for which we used an M.S. code based on RKF45 and 5 integration 
steps per (smaller) shooting interval. The major shooting intervals were found by 
requiring that the maximal increment should not exceed some preset value q. Table 
6.1 now confirms our expectation that the total cpu time (in millisecs) is practically 
independent of this value of 9 indeed. 

TABLE6.1. E= 104 

6 lo, 104 106 108 1010 1012 1014 1016 

k 10 7 5 4 3 3 3 2 

cpu 415 412 412 416 408 407 410 414 
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